A New Gibbs Sampling Based Bayesian Model Updating Approach Using Modal Data from Multiple Setups
نویسنده
چکیده
This paper presents a new Gibbs sampling based approach for Bayesian model updating of a linear dynamic system based on modal data (natural frequencies and partial mode shapes of some of the dominant modes) obtained from a structure using multiple setups. Modal data from multiple setups pose a problem as mode shapes identified from multiple setups are normalized individually and the scaling factors to form the overall mode shape are not known a priori. For comprehensive quantification of the uncertainties, the proposed approach allows for an efficient update of the probability distribution of the model parameters, overall mode shapes, scaling factors, and prediction error variances. The proposed approach does not require solving the eigenvalue problem of any structural model or matching of model and experimental modes, and is robust to the dimension of the problem. The effectiveness and efficiency of the proposed method are illustrated by simulated numerical examples.
منابع مشابه
Structural Model Updating and Health Monitoring with Incomplete Modal Data Using Gibbs Sampler
A new Bayesian model updating approach is presented for linear structural models. It is based on the Gibbs sampler, a stochastic simulation method that decomposes the uncertain model parameters into three groups, so that the direct sampling from any one group is possible when conditional on the other groups and the incomplete modal data. This means that even if the number of uncertain parameter...
متن کاملGENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS
This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...
متن کاملFEM Updating for Offshore Jacket Structures Using Measured Incomplete Modal Data
Marine industry requires continued development of new technologies in order to produce oil. An essential requirement in design is to be able to compare experimental data from prototype structures with predicted information from a corresponding analytical finite element model. In this study, structural model updating may be defined as the fit of an existing analytical model in the light of measu...
متن کاملSTRUCTURAL DAMAGE PROGNOSIS BY EVALUATING MODAL DATA ORTHOGONALITY USING CHAOTIC IMPERIALIST COMPETITIVE ALGORITHM
Presenting structural damage detection problem as an inverse model-updating approach is one of the well-known methods which can reach to informative features of damages. This paper proposes a model-based method for fault prognosis in engineering structures. A new damage-sensitive cost function is suggested by employing the main concepts of the Modal Assurance Criterion (MAC) on the first severa...
متن کاملCalculating posterior distributions and modal estimates in Markov mixture models
This paper is concerned with finite mixture models in which the populations from one observation to the next are selected according to an unobserved Markov process. A new, full Bayesian approach based on the method of Gibbs sampling is developed. Calculations are simplified by data augmentation, achieved by introducing a population index variable into the list of unknown parameters. It is shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015